
Транзистор кремниевый эпитаксиально-планарный структуры *п-р-п* генераторный. Предназначен для применения в усилителях мощности и генераторах в диапазоне частот до 2 ГГц в схеме с общим эмиттером в составе гибридных интегральных микросхем, блоков, обеспечивающих герметизацию и защиту транзисторов от воздействия влаги, соляного тумана, плесневых грибков, инея, росы, агрессивных газов и смесей. Бескорпусный на кристаллодержателе с гибкими выводами.

Тип прибора указывается в этикетке. На транзистор наносится красная точка.

Масса транзистора не более 0,2 г.

Изготовитель — завод «Пульсар», г. Москва.

Электрические параметры

Выходная мощность на $f=2$ ГГц при U_{KB} - 7 В, $I_{K}=45$ мА, δ Ку,р = 2 дБ,	
T_{κ} = +25 °C, не менее	50 мВт
Коэффициент усиления по мощности на <i>f</i> = 2 ГГц	
при U_{KB} = 7 B, I_{K} = 45 мA, I_{K} = +25 °C, не менее	8 дБ
Статический коэффициент передачи тока в схеме ОЭ	
при $C/_{\kappa_3}$ = 6 B, $/_{\kappa}$ = 30 мA, не менее	20
Обратный ток коллектор-эмиттер при U_{κ_9} - 12 B, R_{E_9} = 1 кОм, не более	1 мА
Обратный ток эмиттера при U_{3B} = 2 B, не более	0,1 мА

Предельные эксплуатационные данные

Постоянное напряжение коллектор-эмиттер при R_{59} = 1 кОм	12 B
Постоянное напряжение эмиттер-база	2 B
Потенциал статического электричества	100 B
Постоянный ток коллектора	60 A*
Постоянная рассеиваемая мощность коллектора при T_{κ} = -60+60 °C	375 мВт
Тепловое сопротивление переход-корпус	200 °С/Вт
Температура <i>р-п</i> перехода	+135 "C
Температура окружающей среды	-60T _K = +125 "C

^{*} это не я, это в справочнике так! Видимо всё же мА...

Минимальное расстояние места пайки выводов от кристаллодержателя 2 мм, температура пайки не выше +260 °C, время пайки не более 3 с. Припой ПОС-61. Допускается пайка (сварка) выводов на расстоянии не менее 0,5 мм от кристаллодержателя, при этом температура кристаллодержателя не должна превышать +150 °C. Перед пайкой выводы промывают спиртом, а затем смачивают флюсом. Состав флюса: 10...40% канифоли, 90...60% спирта.

При монтаже транзисторов в гибридной схеме рекомендуется приклеивать основание кристаллодержателя к теплоотводящей поверхности монтажной платы теплопроводящим клеем УП-5-207М ТУ 6-05-241-208-79. Перед нанесением клея кристаллодержатель транзистора и монтажная плата должны быть прогреты при $+60 \pm 5$ °C в течение 6 ± 1 мин. Не допускается наличие щелей и свищей. После приклеивания производится подсушка при $+120 \pm 5$ "С в течение 1 ч и при +150 "С в течение 2 ч. Разрешается монтаж транзисторов в гибридной схеме производить припайкой металлизированного основания кристаллодержателя к теплоотводящей поверхности при температуре пайки не выше +180 °C.

Допускается обрезать выводы на расстоянии не менее 1 мм от кристаллодержателя.

При установке в гибридную схему транзистор должен плотно прилегать к теплоотводу. Шероховатость контактной поверхности теплоотвода должна быть не более 1,6 мкм, неплоскостность не более 0,02 мм.

Допускается применение транзистора на частотах более 2 ГГц, при этом нормы на электрические параметры не гарантируются.

^{&#}x27; При T_{κ} > +60 "С максимально допустимая постоянная рассеиваемая мощность коллектора рассчитывается по формуле $PK_{MAKC} = (135 - T_{\kappa})/200$, Вт